Reliability

RIAD

The « Reliability of Innovative Assemblies and Devices » theme focuses on developing methods and models to assess the reliability of innovative devices, packaging and assemblies.

The theme gathers specialists from the microelectronic assembly reliability field and researches take advantage of more than 15 years of expertise in aging modeling and tests under harsh environments, as close as possible to actual in-field conditions. These harsh environments include space, automotive or marine depths, where components, packaging and devices can be submitted to electrical stresses, high temperatures, temperature gradients and temperature cycles, high humidity, saline mist, pressure, vibrations, radiations. The combinations of stresses are also considered.

Read more
RIAD_Presentation-research-team

Presentation of the research theme

The evolution of technologies allows the development of innovative and highly integrated devices and power modules. We can cite the development of 3D architecture for 3D power modules, with doubled thermal performance for a reduced converter volume made more integrable, with a notable reduction in parasitic inductances, all at a reduced cost. At other scale factors, the development of 3D microelectronic devices with very high integration density is also booming with integration in complex and highly heterogeneous systems, a source of innovation for multiple applications (IoT, biomedical, etc.). Furthermore, the deployment of electronics in increasingly varied environments that are often highly constrained and severe, requires rigorous and methodological consideration of the operational conditions of the systems in order to guarantee their expected service life. For all these devices, the high level of reliability required constitutes a real challenge to which we wish to respond by implementing new modelling and experimental characterisation approaches.

The researchers gathered in the « Reliability of Innovative Assemblies and Devices » have wide multi-physics expertise in electrical, electromagnetic, mechanical, and physical-chemical alterations caused by aging and exposure to harsh environments. That offers a great cohesive human and technological support for innovative research, which is attractive to world-leading universities and companies, leading to partnerships in PhD student supervision and financial support, as well as to many collaborative papers in renowned international journals and conferences.

RIAD-3

RIAD skills

Multiphysics modeling of components and systems

Accelerated aging protocols and models, close to actual in-field use conditions

Lifetime prediction methods

Failure analysis

Multiphysics characterization of components and systems

Design of alternate and innovative interconnect strategies (in either bonding or brazing)

Characterization of materials and of their aging

Contribution to qualification standards

Partners

Collaborations and partners

For the various research projects underway, the IMS Bordeaux laboratory and its teams rely on strong partnerships and collaborations, which allow for the creation of a synergy of strengths and a sharing of technical and human resources

UMS logo

UMS

SERMA_logo

SERMA

Renault_Logo

Renault Group

Safran_logo

Safran

ST_Logo

ST Microelectronics

MBDA

MBDA

EDF

EDF

VEDECOM

VEDECOM

IRT Saint Exupéry logo

IRT St Exupéry

CEA_Leti

CEA Leti

News

Latest news from the team

ANR Player-one

Lorem ipsum

ANR Mignon
Members

Staff

Meet the members of the research team

Farnaz AMANI
Thinhinane BESSAD
Jean-Yves DELETAGE
Tristan DUBOIS
Geneviève DUCHAMP
Louise DUMAS
Léo DURAND
Isabelle FAVRE
Hélène FREMONT
Houda FRIAA
Alexandrine GUEDON-GRACIA
Victor MAHAUT
Nathalie MALBERT
Léo MISCHLER
Vincent SISOMSEUN
Loic THEOLIER
Ariane TOMAS
Frédéric VERDIER
Eric WOIRGARD
Résumé en français

L’évolution des technologies permet le développement de dispositifs innovants très fortement intégrés. On peut citer le développement d’architecture 3D pour des modules de puissance 3D, aux performances thermiques doublées pour un volume de convertisseur réduit rendu plus intégrable, avec une réduction notable des inductances parasites, le tout pour un coût réduit. A d’autres facteurs d’échelle, le développement de dispositifs microélectroniques 3D à très haute densité d’intégration est également en plein essor avec une intégration dans les systèmes complexes et fortement hétérogènes, source d’innovation pour de multiples applications (IoT, biomedical…). Par ailleurs, le déploiement de l’électronique dans des environnements de plus en plus variés souvent fortement contraints et sévères, nécessite de prendre en compte de façon rigoureuse et méthodologique les conditions opérationnelles des systèmes afin d’en garantir la durée de vie attendue. Pour tous ces dispositifs, le haut niveau de fiabilité requis constitue un véritable enjeu auquel nous souhaitons répondre par la mise en œuvre de nouvelles approches de modélisation et de caractérisations expérimentales.

 

Contact our team

If you have a request or questions about the laboratory, please contact our team.