Emma JOUFFROY will defend his thesis on March 28th, 2024 at 9:00 a.m., (amphi JP. DOM – IMS Laboratory) on the subject : “Development of unsupervised models for obtaining interpretable latent representations of images”.

The Laser Megajoule (LMJ) is a large research device that simulates pressure and temperature conditions similar to those found in stars. During experiments, diagnostics are guided into an experimental chamber for precise positioning. To minimize the risks associated with human error in such an experimental context, the automation of an anti-collision system is envisaged. This involves the design of machine learning tools offering reliable decision levels based on the interpretation of images from cameras positioned in the chamber. Our research focuses on probabilistic generative neural methods, in particular variational auto-encoders (VAEs). The choice of this class of models is linked to the fact that it potentially enables access to a latent space directly linked to the properties of the objects making up the observed scene. The major challenge is to study the design of deep network models that effectively enable access to such a fully informative and interpretable representation, with a view to system reliability. The probabilistic formalism intrinsic to VAE allows us, if we can trace back to such a representation, to access an analysis of the uncertainties of the encoded information.

Contact our team

If you have a request or questions about the laboratory, please contact our team.