Laboratoire de l'Intégration du Matériau au Système

Log in

Login to your account

Username *
Password *
Remember Me


BORNAT Yannick, Associate Professor DEGACHE Amélie, PhD student  LEWIS Noëlle, Professor      
MAFILAZA Donnie, Engineer Assistant N'KAOUA Gilles, Engineer OLCOMENDY Loïc PhD student  RENAUD Sylvie, Professor     


BioTIFS (2019 - 2022)

Grant support: ANR (Agence Nationale de la Recherche, France) and NIH (National Institutes of Health, USA)

To influence neural activity for desired outcomes, neural interface technology must access the appropriate peripheral nerve tissue, activate it in a focal targeted manner, and alter patterns of activity generated by the nervous system. The anatomical organization of peripheral nerves, which consists of multiple nerve fibers clustered into one or more fascicles, presents opportunities and challenges for precise control of spatiotemporal patterns. Systems that enable greater specificity are likely to achieve a higher degree of functionality with fewer side effects.

The BioTIFS project is directed at increasing the specificity that can be achieved with peripheral nerve stimulation in a manner that will enable a wide range of clinical and non-clinical applications. Longitudinal intrafascicular electrodes (LIFEs) allow access to nerve fibers within a fascicle and their mechanical properties are well-suited for chronic use. LIFEs enable activation with sub-fascicular specificity, but there is great potential for enhancing their specificity using advanced stimulation strategies. One of the impacts is an improved neurotechnology for restoring sensation to amputees and for treating diseases such as diabetes, inflammation, epilepsy, or depression..

Edifice (2016 - 2019)

Grant support:  MENSR & CNRS (PEPS translational engineering)

Implantable medical devices play a major role in cardiac arythmy treatment. In this field, there are two main categories of implantable devices: pacemakers, or cardiac stimulators, and implantable defibrilators. About 400000 devices of this kind are implanted each year in the USA; in france, 250000 patients are equiped and need to periodically check their prosthesis.

The main weakness of an implantable device is at the implant-tissue interface, because of sustained inflamatory reaction, cardiac fibrosis. The body tries to "isolate" the implant from the target tissue, encapsulating it in a dense fibrotic layer, at it has two consequence types: an electric consequence, due to the increase of stimulation thresholds and the alteration of electrodes sensitivity, which reduces battery life on the long term; a medical consequence : tissue attachements make it delicate to extract probes.

This project proposes to explore a non-invasive electric measurement method, based on impedance spectroscopy, to characterize the fibrotic capsule around implanted electrodes. The innovation goal is to add to the stimulation therapeutic signal an algorithm to measure impedance. This algorithm will regularly provide the state of probe-induced fibrosis. This project will also make it possible to test new biocompatibility solutions for these probes.

For this purpose, this exploratory project co-supervised by LIRYC IHU in Pessac, will pursue three main goals:better understand implant-induced cardiac fibrosis mechanisms at cell level (IMS) and at tissue level (LIRYC IHU) ; develop a new robust and non-invasive method  for impedance spectroscopy characterisation to monitor fibrosis around the implants in real-time ; develop an electronic device  for real-time monitoring based  on the modellisation of previous in vivo and ex vivo measurements.

Diablo (2018 - 2020)

Grant support: ANR (Agence Nationale de la Recherche, France)

Chronic diseases are the main cause of death with a major burden on health budgets and economic losses. In TYPE 1 DIABETES MELLITUS destruction of pancreatic beta-cells leads to absolute insulin deficiency and concerns 5-10% of the current 371 million diabetes patients, expected to rise to 592 million by 2035 worldwide. T1DM starts generally in children/young adults with dire consequences and requires long-term solutions.

CONTINUOUS GLUCOSE MONITORING (CGM) linked to insulin delivery presents a major recent advance but suboptimal therapeutic insulin levels and life threatening hypoglycemia are still serious concerns. Current technology uses subcutaneous glucose measuring via electrochemical electrodes and algorithms to predict insulin dosage. This ARTIFICIAL PANCREAS is limited by its glucose sensor which does not capture other nutrients such as lipids or the general body status relayed by hormonal signals, conveying altered needs during stress, physical activity, cycle etc. Therefore NUMEROUS ALGORITHMS have been developed which still imperfectly forecast and need considerable user intervention precluding closed loop function.

IN CONTRAST, 0.5 billion years of evolution have shaped islets as “in-born” sensors/actuators in glucose homeostasis. ISLET ENDOGENOUS ALGORITHMS encode electrical activity for biphasic oscillatory insulin secretion and insulin safety mechanisms but underlying mechanisms are not fully known. We have already developed, patented and published a HIGH-RESOLUTION MICROFLUIDIC MULTI-ELECTRODE ARRAY recording and an ON-LINE REAL TIME ANALYSIS SYSTEM for islet electrical activity as biosensor.

DIABLO IS A MULTIDISCIPLINARY PROJECT of experts in CGMS diabetes therapy, islet electrophysiology, electronic devices/systems for real time interaction with biology, control automation for operational autonomy of complex safety-critical systems. We aim ultimately at a bio-microelectronic hybrid sensor and robust controller for autonomous, continuous hormone replacement therapy responsive to different every-day life situations through three main objectives:

OBJECTIVE 1: Assess the DIABLO human in silico biosensor model in physiological conditions (glucose, hormones). Using high-resolution islet data (generated by us) and parametric/non parametric identification techniques, we will design a mathematical model of islet sensing able to reproduce the observed data, predict their future behavior and explore underlying mechanisms.

OBJECTIVE 2: Enhance the reference whole human body single-input T1D simulator (T1DMS) by integrating the biosensor model from Obj. 1 and an innovative multi-parametric controller. Ensure the controller can be embedded into a hardware device.

OBJECTIVE 3: Design the DIABLO biosensor device and assess it in in vivo and extra corpore experiments (microdialysis). Validate the controller via a CLINICLA TRIAL with diverse daily scenarios, followed by a comparison to classical CGMS and evaluation of the benefits of our 1) multi-parameter sensor and 2) robust multi-input controller.

DIABLO will impact RESEARCH, HEALTHCARE TECHNOLOGY and DIABETES THERAPY by (i) DECODING of endogenous islets algorithms suitable also for other CGMS devices, (ii) ; 2) High-level synthesis techniques for EMBEDDED INTEGRATED CIRCUITS able to optimally process biosignals in real time, (iii) a NEW BIO-ELECTRONIC SENSOR to investigate and maintain glucose homeostasis for application in man, (iv) artificial pancreas algorithms by A NEW CLOSED-LOOP CONTROL with stability and robustness to sudden changes in a multivariate environment; (v) as high-resolution technique and modeling in development of human ORGANS-ON-CHIP, to provide unique insights into drug actions and genetic alterations.



Diaglyc (2018 - 2020)

Grant support: ANR (Agence Nationale de la Recherche, France) and FEDER

Le diabète de type I (DT1) est une maladie chronique de longue durée (plus de 50 ans) qui concerne 5 à 10% des 500 millions de diabétiques dans le monde, et se déclare généralement chez les enfants ou jeunes adultes. En plus de la souffrance du patient et de son entourage, la maladie a un coût important en raison de sa chronicité et la difficulté pour les patients à intégrer le monde du travail: le DT1 engendre des séquelles oculaires, rénales, cardiaques, etc..
La maladie est actuellement incurable, l'application thérapeutique des cellules souches est encore hypothétique et les transplantations d'îlots ne concernent que dans qu'une minorité des cas. Le "pancréas artificiel", système en boucle fermée qui reproduit la régulation effectuée par un pancréas sain, est actuellement le projet thérapeutique le plus prometteur : les premiers modèles se trouvent sur le marché et sont appliqué à des cohortes - très restreintes - de patients. Le pancréas artificiel devrait améliorer la qualité de vie et éviter les complications chroniques des patients atteints de diabète de type 1 (DT1), maladie chronique.

Dans le DT1, la destruction des cellules beta-pancréatiques provoque un déficit en insuline et nécessite une insulinothérapie dont le contrôle reste complexe : même avec les plus avancées des technologies de mesure continue et de monitoring de la glycémie (CGM), les algorithmes d'insulinothérapie sont améliorables, les capteurs électrochimiques utilisés étant limités à la mesure de glucose. Se baser sur des capteurs du glucose seul revient à négliger les lipides et les signaux hormonaux dont les variations se reflètent sur le besoin d'insuline en cas de stress, activité physique, cycle menstruel, etc... Les pancréas artificiels basés sur les CGM sont ne fait des boucles fermées supervisées, qui reposent encore trop sur les ajustements du patient/médecin pour être réellement considérées équivalent à un pancréas sain.

Le projet DIAGLYC est consacré à l'étude d'un nouveau paradigme de détermination en temps réel du besoin d'insuline chez les patients souffrant de DT1. A partir de résultats préliminaires prometteurs et une technologie brevetée par les partenaires, DIAGLYC développe un nouveau biocapteur intelligent ( DIABETASENSOR) à base d'îlots pancréatiques sains dans un milieu physiologiques pathologique (liquide lymphatique du patient). Par un système de microélectrodes (circuits MEA), DIABETASENSOR mesure l'activité des îlots et calcule par des algorithmes d'identification les composantes en nutriments et hormones du milieu mesuré. A terme, DIABETASENSOR devrait être le coeur d'un système intégré et portable d'insulinothérapie, réalisant en temps réel la mesure et la quantification du besoin d'insuline chez un patient diabétique. Dans un pancréas artificiel, ce système pourra contrôler en boucle fermée une pompe à insuline en répondant véritablement aux signaux et exigences physiologiques.

DIAGLYC a pour objectifs:
1) De décoder les algorithmes endogènes des îlots et de comprendre leurs mécanismes sous-jacents grâce aux techniques de mesure basées sur la nouvelle technologie de capteur bio-électronique haute résolution,
2) De caractériser et modéliser de la réponse électrique des îlots aux nutriments et hormones, et le lien avec leur sécrétion biphasique d'insuline.
3) De valider des protocoles expérimentaux in vivo sur rongeur et sur humain. Ces expériences démontreront la capacité du capteur bio-électronique, complété par une microfluidique ad hoc, à maintenir l'homéostasie du glucose en boucle ouverte supervisée via une micro-dialyse sous-cutanée (le capteur étant positionné en extra-corporel).

DIAGLYC fournira ainsi une méthode de quantification fiable et en temps réel des composantes en hormones et nutriments. Cette quantification permettra d'améliorer la régulation de la glycémie générant la commande de libération d'insuline, dans un premier temps en utilisant les algorithmes de régulation utilisés actuellement pour les pancréas artificiels. En parallèle (non décrit dans le projet DIAGLYC), les chercheurs collaborent avec des automaticiens pour développer de meilleurs algorithmes de contrôle et de prédiction conférant au dispositif CGM un pouvoir prédictif, auto-adaptatif et robuste aux différentes variabilités et erreurs de mesure.

L'impact de DIAGLYC sera marquant à plusieurs titres : recherche en biologie des îlots, technologies des dispositifs médicaux, thérapie du DT1. Au-delà des objectifs précités, de DIAGLYC peuvent émerger à moyen terme : 1) le décodage des algorithmes endogènes des îlots ; 2) de nouveaux capteurs pour les CGM ; 3) un capteur alternatif pour le pancréas artificiel ; 4) une méthodologie efficace et rapide de contrôle qualité in situ des îlots dérivés de cellules souches ; 5) la technologie nécessaire aux organes-sur-puces microfluidiques. 


IsletChip (2014 - 2017)

Grant support: ANR (Agence Nationale de la Recherche, France) and DGOS (Direction Générale de l'Offre de Soins, France)

Type 1 diabetes concerns some 30 million patients. Transplantation represents one therapeutic choice in patients with serious progressive complications. Currently no method has been established to evaluate the quality of donor islets within the short time span prior to transplantation. IsletChip bridges this important gap in a multidisciplinary approach (diabetology-transplantation medicine/biology-electrophys./microelectronics) from CNRS research groups, clinical groups in France (Grenoble, Montpellier) and in Switzerland (Geneva). The project develops a novel bio-sensing approach (extracellular recordings of islets on MEAs), real-time data filtering and time-frequency analysis. The project addresses technological, biological and signal processing challenges that will be of benefit for other applications (e.g. rehabilitation of neuronal motor control, control of stem cell differentiation). Our approach may ultimately also serve as sensor in an artificial pancreas. 

CEnAVex (2013-2016)

Grant support: ANR (Agence Nationale de la Recherche, France) and NIH (National Institutes of Health, USA)

Approximately 270,000 Americans and 20,000 French are survivors of traumatic spinal cord injury (SCI). The cervical cord is the most common site of injury (54%) and people with cervical SCI can have partial or complete loss of ventilatory control. Most people with SCI that require ventilation management are initially supported with positive pressure-mechanical ventilation, which is associated with significant discomfort and can lead to respiratory diseases and prevent optimal recovery. Alternatively, ventilation can be achieved by diaphragmatic pacing by electrical phrenic nerve stimulation. More recently, intramuscular stimulation of multiple respiratory muscles has been proposed as a viable less surgically invasive approach. The open-loop stimulation strategy currently utilized for pacing has major limitations including the need for manual stimulation parameter tuning, and inability to alter stimulation parameters on muscle fatigue or changing metabolic demand. 

The CENAVEX project proposes the design, development and prototype realization of a novel closed-loop control system that utilizes the computational power of spike-based neuromorphic hardware to adaptively control dynamic processes in biological systems. It will specifically address the challenge of simultaneously adapting the rhythm and pattern of oscillatory drive to achieve effective and efficient control of complex biological functions. The work will focus on the specific problem of controlling ventilation in individuals with high-level SCI by electrically stimulating the motoneurons that drive respiratory musculature. 

To accomplish our objectives we will develop a lung-respiratory muscles computational model and test the abilities of the CENAVEX system, implement the control scheme in software for real-time computer-based control of ventilation in anesthetized intact rodents and those with chronic cervical incomplete SCI, and implement the scheme in neuromorphic hardware with spiking networks, synaptic learning and bio-interface hardware for standalone system assessment in rodents. Successful completion of the proposed project will pave the path for translation to an innovative respiratory pacing system capable of allowing adequate ventilation in people with SCI with impaired respiratory control, taking into account non-linear properties of muscle activation, muscle fatigue, and metabolic demand of the individual.

The Human Brain Project (2013-2023)

Grant support: European Union (Flagship projects - Future Emerging Technologies)

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding will lead to fundamentally new computing technologies, transform the diagnosis and treatment of brain diseases, and provide profound insights into our humanity. Today, for the first time, exponential improvements in the capabilities of modern ICT open up new opportunities to investigate the complexity of the brain. The goal of the Human Brain Project (HBP) is thus to build an integrated ICT infrastructure enabling a global collaborative effort to address this grand challenge, and ultimately to emulate the computational capabilities of the brain. The infrastructure will consist of a tightly linked network of six ICT platforms, which, like current large-scale physics facilities, will operate as a resource both for core HBP research and for external projects, chosen by competitive call. The HBP will drive innovation in ICT, creating new technologies for i) interactive supercomputing, visualisation and big data analytics; ii) federated analysis of globally distributed data; iii) simulation of the brain and other complex systems; iv) objective classification of disease; v) scalable and configurable neuromorphic computing systems, based on the brain’s principles of computation and cognition and its architectures. Expected outputs include simulations of the brain that reveal the chains of events leading from genes to cognition; simulations of diseases and the effects of drugs; early diagnoses and personalised treatments; and a computing paradigm that overcomes bottlenecks in power, reliability and programmability, captures the brain’s cognitive capabilities, and goes beyond Moore’s Law. Overall, the HBP will help to reach a unified understanding of the brain, reduce the economic and social burden of brain disease, and empower the European pharmaceutical and computing industries to lead world markets with enormous potential for growth. 

IMS Bordeaux is in charge of organizing over HBP consortium workshops, schools, on-line training and conferences:

  • Multidisciplinary workshops on HBP-related research topics
  • Platform training workshops
  • Summer Schools
  • Annual student conference

87 institutions (EU and non-EU)

Diaβetachip (2013-2015)

Hybrid Bioelectronics Sensors as Novel Devices for Use in Diabetology

Based on our expertise and proof of concept (see below), we propose to develop stepwise a new cell based-technology combining primary islet cells cultured on multi-electrode arrays (MEAs) and digital on-chip computation for real-time analysis (providing smart MEAs). This ensures rapid diagnostics and avoids storage of extremely large amounts of data generated by high-frequency recordings. Microelectrode arrays and extracellular recordings allow long-term measurements (in our hands for more than a week) in contrast to other techniques (optical, patch) and such set-ups are per se relatively easy to miniaturize. Our arrangement of smart MEAs will serve:

  • First as a device for automated functional islet screening within the granting period for pre-transplantation quality tests, drug and toxicology tests, real-time analysis during regeneration of islet cells from stem cells: the Diaßchip device.
  • In the long-term we plan to extend this device to a bio-microelectronic hybrid sensor of insulin demand: the Diaßsensor product.

University hospital of Bordeaux 
CBMN (UMR 5248)

BIODIA (2012-2014)

Biotechnologies for diabetes therapy

Using cultured pancreatic islets (or islet cells) as sensor, microelectrodes to record the sensor signal and active microelectronic devices to decode on-line the sensor signal, BIODIA aims now to provide the following two items:

  • An external sensor for automatic screening of glucose responses and the effect of drugs and toxic compounds hereon (to be used in screening for compounds or during stem cell differentiation).
  • An external sensor detecting the demand in insulin as the base for the further development of a sensor commanding an insulin pump and functioning in a closed loop configuration.

Beyond the granting period, the closed loop will be developed further to provide a sensor for continuous on-line monitoring and automated signal interpretation (drug/toxicology screening) in animals (48 months) and finally an implantable sensor operating in a closed-loop with a delivery device in man. 

J. Lang, CBMN (UMR 5248) 
V. Ravaine, ISM (UMR 5255)

HYRENE (2011-2014)

HYRENE is a fundamental research project aiming at the development of innovative technologies : hybrid systems connecting artificial and biological neural networks. 

One goal of this project is to couple a whole organ (mouse spinal cord) with a hardware networks in order to restore the organ functional activity after a lesion. Further perspectives are the development of smart “neuroelectronic” interfaces for functional rehabilitation. Population aging all around the world raises a societal issue due to the associated increase in neurodegenerative diseases. 
One therapeutic approach to treat resulting functional deficiencies is to propose neural prosthesis based on neuro-electronic implants. In recent years, technological advances in the field of micro- and nano-electronics has led to the development of new instrumentation tools for the exploration of the central nervous system, making use of dedicated interfaces between microelectronics and live neural networks. This field of research has strongly developed since 2000, especially with the emergence of brain-machine interfaces. These interfaces, which are now tested in humans, process brain signals recorded with microelectrode arrays to turn them into command signals for the control of external devices (robotic arms, computers…). 
However, to date, such interfaces remain mainly monodirectional, with no information delivered back to the network. The current challenge is to achieve bidirectional neuro-electronic interfaces, establishing a true dynamic communication between live neural networks and electronic systems. Especially, electronic systems connected to neural networks with existing technologies do not include embedded intelligence. 
The technical approach defined for HYRENE is to couple live large-scale neural networks and artificial neural networks embedded in analog and mixed integrated electronics and endowed with adaptive capabilities (synaptic plasticity). This hybrid coupling will use dedicated microelectrode arrays to record and electrically stimulate live neural networks, with a specific emphasis on stimulation localization. The system including the artificial and living neural networks will form a closed loop with a regulated feedback. The artificial neural networks will implement conductance-based neuron and synapse models, controlled by plasticity rules like STDP (spike-timing dependent plasticity). 
Dedicated integrated electronics will be designed to implement the communication channels between the living and artificial networks: signal conditioning for the biological signals (from living to artificial) and adapted coding of the artificial neurons events (from artificial to living). In this project, integration between physics (electronic engineering, Microsystems) and biology (integrative neuroscience) is mandatory. 

All 3 partners rely on their large experience in multi-disciplinary collaborative projects at national and international levels. This project is expected to generate scientific advances:

  • in the field of information science: by the design of embedded self-organized artificial neural networks, able to communicate in real time with entire biological networks.
  • in the field of life science : a tool to develop and test efficient strategies for spinal cord rehabilitation.

Total : 45

Articles in peer-reviewed journal → 14 Show


Vertical Organic Electrochemical Transistors and Electronics for Low Amplitude Micro‐Organ Signals
Abarkan, Myriam ; Pirog, Antoine ; Mafilaza, Donnie ; Pathak, Gaurav ; N'Kaoua, Gilles ; Puginier, Emilie ; O'Connor, Rodney ; Raoux, Matthieu ; Donahue, Mary J. ; Renaud, Sylvie ; Lang, Jochen
Dans : Advanced Science


IC-Based Neuro-Stimulation Environment for Arbitrary Waveform Generation
Kölbl, Florian ; Bornat, Yannick ; Castelli, Jonathan ; Regnacq, Louis ; N’kaoua, Gilles ; Renaud, Sylvie ; Lewis, Noëlle
Dans : Electronics


Orthogonal Multitone Electrical Impedance Spectroscopy - OMEIS -for the Study of Fibrosis Induced by Active Cardiac Implants
de Roux, Edwin ; Degache, Amélie ; Terosiet, Mehdi ; Kolbl, Florian ; Boissière, Michel ; Pauthe, Emmanuel ; Histace, Aymeric ; Bernus, Olivier ; Lewis, Noëlle ; Romain, Olivier
Dans : Journal of Sensors

Restoring Ventilatory Control Using an Adaptive Bioelectronic System
Siu, Ricardo ; Abbas, James ; Hillen, Brian ; Gomes, Jefferson ; Coxe, Stefany ; Castelli, Jonathan ; Renaud, Sylvie ; Jung, Ranu
Dans : Journal of Neurotrauma


Decreased spontaneous electrical activity in neuronal networks exposed to radiofrequency 1800 MHz signals
El Khoueiry, Corinne ; Moretti, Daniela ; Renom, Rémy ; Camera, Francesca ; Orlacchio, Rosa ; Garenne, André ; Poulletier de Gannes, Florence ; Poque-Haro, Emmanuelle ; Lagroye, Isabelle ; Veyret, Bernard ; Lewis, Noelle
Dans : Journal of Neurophysiology

Multimed: An Integrated, Multi-Application Platform for the Real-Time Recording and Sub-Millisecond Processing of Biosignals
Pirog, Antoine ; Bornat, Yannick ; Perrier, Romain ; Raoux, Matthieu ; Jaffredo, Manon ; Quotb, Adam ; Lang, Jochen ; Lewis, Noëlle ; Renaud, Sylvie
Dans : Sensors


In vitro and in vivo biostability assessment of chronically-implanted Parylene C neural sensors
Lecomte, Aziliz ; Degache, Amélie ; Descamps, Emeline ; Dahan, Lionel ; Bergaud, Christian
Dans : Sensors and Actuators B: Chemical


An Embedded Deep Brain Stimulator for Biphasic Chronic Experiments in Freely Moving Rodents
Kolbl, Florian ; N'Kaoua, Gilles ; Naudet, Frederic ; Berthier, Florent ; Faggiani, Emilie ; Renaud, Sylvie ; Benazzouz, Abdelhamid ; Lewis, Noelle
Dans : IEEE Transactions on Biomedical Circuits and Systems

Theoretical study and optimisation of a standard deviation estimator circuit for adaptive threshold spike detection
Rummens, François ; Ygorra, Stéphane ; Renaud, Sylvie ; Lewis, Noëlle
Dans : International Journal of Circuit Theory and Applications

Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation
Zbrzeski, Adeline ; Bornat, Yannick ; Hillen, Brian ; Siu, Ricardo ; Abbas, James ; Jung, Ranu ; Renaud, Sylvie
Dans : Frontiers in Neuroscience


Low-Gain, Low-Noise Integrated Neuronal Amplifier for Implantable Artifact-Reduction Recording System
Zbrzeski, Adeline ; Lewis, Noëlle ; Rummens, Francois ; Jung, Ranu ; N'Kaoua, Gilles ; Benazzouz, Abdelhamid ; Renaud, S.
Dans : Journal of Low Power Electronics and Applications


Design of a Bioelectronics Hybrid System in Real Time and in Closed Loop
Bontorin, Guilherme ; Garenne, André ; Lopez, Colin ; Le Masson, Gwendal ; Renaud, Sylvie
Dans : Electronics


Wavelet transform for real-time detection of action potentials in neural signals
Quotb, Adam ; Bornat, Yannick ; Renaud, Sylvie
Dans : Frontiers in neuroengineering

Non-invasive long-term and real-time analysis of endocrine cells on micro-electrode arrays
Raoux, Matthieu ; Bornat, Yannick ; Quotb, Adam ; Catargi, Bogdan ; Renaud, Sylvie ; Lang, Jochen
Dans : The Journal of Physiology
Conference with proceedings (national) → 20 Show


Microdosimetry of Multi Electrodes Array in an RF Exposure System for In vitro Real-Time Recordings
Nefzi, Amani ; Lemercier, Clément ; El Khoueiry, Corinne ; Lewis, Noëlle ; Lagroye, Isabelle ; Boucsein, Clémens ; Lévêque, Philippe ; Arnaud-Cormos, D.
Dans : International Microwave Biomedical Conference (IMBioC 2019), Nanjing (China)


Do GSM-1800 induce DNA damage and genomic instability in nerve cells ?
Lagroye, Isabelle ; Poque, Emmanuelle ; Renom, Rémy ; Poulletier de Gannes, Florence ; El Khoueiry, Corinne ; Hurtier, Annabelle ; Percherancier, Yann ; Veyret, Bernard
Dans : BioEM2018 Meeting, Portoroz (Slovenia)

Preliminary Investigation Towards Embedded Impedance Spectroscopy in Implanted Stimulators
Regnacq, Louis ; Degache, Amélie ; Castelli, Jonathan ; N'Kaoua, Gilles ; Bornat, Yannick ; Poulletier de Gannes, Florence ; Renaud, Sylvie ; Lagroye, Isabelle ; Lewis, Noelle ; Kolbl, Florian ; Bernus, Olivier
Dans : International Workshop on Impedance Spectroscopy (IWIS), Chemnitz (Germany)


An IC-Based Controllable Stimulator for Respiratory Muscle Stimulation Investigations
Castelli, Jonathan ; Kolbl, Florian ; Siu, Ricardo ; N'Kaoua, Gilles ; Bornat, Yannick ; Mangalore, Ashwin ; Hillen, Brian ; Abbas, James ; Renaud, Sylvie ; Ranu, Jung ; Lewis, Noëlle
Dans : IEEE EMBC, Jeju Island (South Korea)


Circuits de stimulation et de surveillance de l’interface tissu/implant
Castelli, Jonathan ; Lewis, Noëlle ; Renaud, Sylvie
Dans : GDR SOC-SIP, Nantes (France)

Decrease in burst activity of neuronal networks under exposure to RF as a function of SAR for the CW and GSM-1800 signals
El Khoueiry, Corinne ; Camera, Francesca ; Orlacchio, Rosa ; Renom, Rémy ; Garenne, André ; Poulletier de Gannes, F. ; Poque-Haro, Emmanuelle ; Lagroye, I ; Bernard, Veyret ; Lewis, Noëlle
Dans : Annual Meeting of BioElectroMagnetics Society, BEMS, 2016, Ghent (Belgium)


CMOS differential neural amplifier with high input impedance
Rummens, Francois ; Renaud, Sylvie ; Lewis, Noelle
Dans : 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS), Grenoble (France)

A versatile fast-development platform applied to closed-loop diaphragmatic pacing
Zbrzeski, Adeline ; Siu, Ricardo ; Bornat, Yannick ; Hillen, Brian ; Jung, Ranu ; Renaud, Sylvie
Dans : 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier (France)


Silicon neuron dedicated to memristive spiking neural networks
Lecerf, Gwendal ; Tomas, Jean ; Boyn, Sören ; Girod, Stéphanie ; Mangalore, Ashwin ; Grollier, Julie ; Saïghi, Sylvain
Dans : Circuits and Systems (ISCAS), 2014 IEEE International Symposium on, Melbourne (Australia)


Characterization of a non linear fractional model of electrode-tissue impedance for neuronal stimulation
Kolbl, Florian ; Sabatier, Jocelyn ; N'Kaoua, Gilles ; Naudet, Frédéric ; Faggiani, Emilie ; Benazzouz, Abdelhamid ; Renaud, Sylvie ; Lewis, Noëlle
Dans : Biomedical Circuits and Systems Conference (BioCAS), 2013 IEEE, Rotterdam (Netherlands)

A novel bioelectronic glucose sensor to process distinct electrical activities of pancreatic beta-cells
Nguyen, Quang Vinh ; Caro, Anton ; Raoux, Matthieu ; Quotb, Adam ; Floderer, Jean-Baptiste ; Bornat, Yannick ; Renaud, Sylvie ; Lang, Jochen
Dans : 35th Annual International Conference of the IEEE EMBS, (Japan)


NeuroBetaMed: A re-configurable wavelet-based event detection circuit for in vitro biological signals
Quotb, Adam ; Bornat, Yannick ; Raoux, Matthieu ; Lang, Jochen ; Renaud, Sylvie
Dans : Circuits and Systems (ISCAS), 2012 IEEE International Symposium on, Seoul (South Korea)


A Tunable Integrated Device for LFP Tracking
Zbrzeski, Adeline ; Lewis, Noëlle ; Syed, Emilie ; Benazzouz, Abdelhamid ; Boraud, Thomas ; Renaud, Sylvie
Dans : 26th Conference on Design of Circuits and Integrated systems (DCIS 2011), Albufeira (Portugal)


In Vivo Electrical Characterization of Deep Brain Electrode and Impact on Bio-amplifier Design
Kölbl, Florian ; Zbrzeski, Adeline ; Syed, Emilie ; Renaud, Sylvie ; Lewis, Noëlle
Dans : IEEE Biocas 2010, Paphos (Cyprus)

A Programmable BioAmplifier on FPAA for in vivo Neural Recording
Zbrzeski, Adeline ; Hasler, Paul ; Kölbl, Florian ; Syed, Emilie ; Lewis, Noëlle ; Renaud, Sylvie
Dans : IEEE Biocas 2010, Paphos (Cyprus)


A real-time setup for multisite stimulation on living neural networks
Bontorin, G. ; Garenne, A. ; Tomas, J. ; Lopez, C. ; O. Morin, F. ; Renaud, S.
Dans : NEWCAS 09, Toulouse (France)

Low-Power Linear-Phase Delay Filters for Neural Signal Processing: Comparison and Synthesis
Gosselin, Benoit ; Zbrzeski, A. ; Sawan, M. ; Kerhervé, Eric
Dans : 2009 IEEE Int. Symposium on Circuits and Systems (ISCAS), Taipei (Taiwan)


A Real-time Setup for Multisite Signal Recording and Processing in Living Neural Networks
Bontorin, G. ; Lopez, C. ; Bornat, Y. ; Lewis, N. ; Renaud, S. ; Garenne, A. ; Chanaud, M. ; Le Masson, G.
Dans : InternationaI Symposium on Circuits And Systems 2008 (ISCAS08), Seattle (United States)


Low noise and low Cost Neural Amplifiers
Bontorin, Guilherme ; Tomas, Jean ; Renaud, Sylvie
Dans : Int. Conf. on Electronics, Circuits and Systems (ICECS'2007),, Marrakech (Morocco)

A Real-Time Closed-Loop Setup for Hybrid Neural Networks
Bontorin, G. ; Renaud, S. ; Garenne, A. ; Alvado, L. ; Le Masson, G. ; Tomas, J.
Dans : Proc. of the 29th Annaul Int. Conference of the IEEE EMBS, Lyon (France)
Book chapters → 2 Show


Fabrication of biomolecule microarrays for cell immobilization using automated microcontact printing
Foncy, Julie ; Estève, Aurore ; Degache, Amélie ; Colin, Camille ; Cau, Jean-Chistophe ; Malaquin, Laurent ; Vieu, Christophe ; Trévisiol, Emmanuelle


BioElectronic sensing for insulin demand
Raoux, Matthieu ; Bontorin, Guilherme ; Bornat, Yannick ; Lang, Jochen ; Renaud, Sylvie
Doctoral thesis → 9 Show


Electrical impedance spectroscopy applied to the chronic monitoring of the fibrosis induced by cardiac active implants
Degache, Amelie

THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEURElectrical impedance spectroscopy applied to the chronic monitoring of the fibrosis induced by cardiac active implants
Degache, Amélie


Design and validation of innovative integrated circuits and embedded systems for neurostimulation applications
Castelli, Jonathan


Embedded systems for the interfacing of electronics and biology : modeling and designing an analog adaptive detection chain
Rummens, François

Embedded systems for the interfacing of electronics and biology : modeling and designing an analog adaptive detection chain
Rummens, François


Design of electrical adaptive stimulators for different pathological contexts : a global approach
Kölbl, Florian


Systems and methods for adaptive and real-time detection of biological activity
Quotb, Adam


Real Time Integrated Circuits for Recording and Analysing Local Field Potentials. Application to Parkinson Disease for New Adaptative Deep Brain Stimulation
Zbrzeski, Adeline


Intelligent multielectrode arrays: improving spatiotemporal performances in hybrid (living-artificial), real-time, closed-loop systems
Bontorin, Guilherme