GPU CONNECT+
The internet of things will progressively transform our daily life. Indeed, the multiplication of connected objectswill allow to analysis, control, automate a set of data. The internet of things is then perceive as the vector of cyberphisical ssytem, which means a huge set of sensors : heterogeneous, energetically autonomous, reliable, very low consumption, emitting data in low or high flow and which are interconnected via internet.
The IMS laboratory has multiple research activities recognised on the themes which perfectly fits in the range of IoT. Internet of Things represent a ideal setting to federate research activities of differents team of the IMS. The next image give an overview of the implication and of the structure in Workpackages that we offer. The purpose is not about to offer the development of a demonstrator of the IoT, but to contribuate by our research activities in foundamental things of IoT and to offer solutions to identifies blocking points.
Fig. 1 : Architecture of Internet of things, in blue : contributions of the IMS
WP1 : Innovatives materials and fabrication technologies
WP-Leader: Isabelle Dufour (Teams: Organique, Nanoélectronique, Fiabilité, Conception, Automatique)
In order to cover the maximum of applications affected by the Internet of Things, it is important to develop microsystems (microsensors with electronic and energy recovery system associated) flexible, reliable, and cheap which have to work on every supports and be deployed at very big scale. To do this materials with different essentiels properties (conductor, insulator, semiconductor, piezoelectric, electrostrictive,...) have to be shaped and characterize.
As an example, we willl develop in a first time inks polymers based with carbon or nanoparticles nanotubes. For the manufacture, printing technics on flexible supports (paper, pastics) will be privileged. Mechanical, electrical, electromechanical and alectro-optical characterization will allow to extract physical properties of materials at micrometric scale for the conception and the modelisation of componant and the constrction of their reliability
Circuit demonstrators can be envisaged serving to evaluate this technologies (plastic fibers for example).
WP2 : Electronic architecture of object interaction
WP-Leader: François Rivet (Teams: Organique, Nanoélectronique, Fiabilité, Conception)
The interaction of objects in the framework of their internet is declined under 2 angles in componant and circuit level : communicating sensors and circuits. About th sensors, the IMS laboratory propose itself to work on the electronic interface of micro-sensors, devices of mechanical energy recovery, and on photovoltaic cells to ensure their autonomous viewing interaction with the storage energy system. Data and/or energy conversion in the componant level respecting the power criticality will be study. Communicant circuits call for an investigation equally in the "achitecture" level and in the "circuit" level in order to increase performances and satisfy the constraint of very low comsumption. These architechture can be mixed (data conservation), digital or analog (transceiver RF or mmW with wide spectrum coverage). Adequacy algorithm-architecture, the optimisation of circuits depending on applications and frequency nimble break system will be study. In the end, the intregration in 3D complex assemblies and SiP will be considered in order to assume the maintenance of performance of circuits equally from the electronic point of view, than electromagneticpoint of view, than thermal point of view.
WP3 : Communication technology : from material to signal traitment
WP-Leader: Guillaume Ferré (Teams: Signal, Fiabilité, Conception)
The WP3 is a complementary to WP1 and WP2. Indeed , in WP3 technology contraints and the circuits design respectivly WP1 and WP2 will be taken into account to ensure received data integrity. To do this, research axis on this WP will concern
1/ Signal treatment algorithm study and proposal taking care of : the massive nature of datas as well as the possibility of one or many communication break due to the autonomous nature of the sensors (cf WP1),
2/ Study and proposal of communication architectures adapted to the content of the datas to transmit and to the frequency bands use as well as the study of adequacy of PHY layers and RF circuits. Results of WP2 will guide this study.
3/ Relevance of proposals are equally analized opposite to the reliability of objects
WP4 : Interoperability, IoT applications
WP-Leader: David Chen (Teams: productique, signal, cognitique et WP-Leader WP1, 2 et 3)
Interoperability is tha capacity t change datas and use mutually exchanged datas. Interoperability is one of the pillars of internet of things. Witout interoperability, things (electronic devices and/or cell phone with sensors, applications,...) can't identifies each other to communicate et exchange functions.
The WP4 have on purpose to offer a set of architecture, models and methods which permit to develop the interoperability of heterogeneous things via internet.
Objects (sensors, comonant, circuits,...) developed by WP1/WP2 are connected to internet to establish data communication and transmission (WP3). In order to exchanged informations between things via internet can be understood and use without interfaccing efforts, WP4 identify incompatibilities which can appear (syntax, format, semantics,...) and elaborate solutions which permit to make interoperability better of this things. Interaction between users and ogjects as well as the interoperability between users interconnected in the context of internet of things will be equaly considered and sudy.
- Publications - Présentations
- Vinitiques 2017 (11ème édition) : Les objets connectés, quelle valeur ajoutée dans le secteur vitivinicole ? - Présentation de G. Ferré : Objets connectés : Etat de l’Art, Enjeux et Perspectives. Présentation de la technologie LoRa et des applications potentielles en viticulture/oenologie
- Article dans les échos : http://www.agence-fleurie.
com/2017/06/vinitiques-11- guillaume-ferre-et-les- problematiques-de-lobjet- connecte-en-viticulture/ - CETSIS 2017 : Conception et déploiement d’un réseau d’IoT en technologie LoRa permettant de connecter l’ENSEIRB-MATMECA, G. Ferré, F. Rivet, R. Tajan, E. Kerhervé, P. Maton, R. Bouché, T. Petitpied et B. Laporte-Fauret
- EAEEIE 2017 : Design and Deployment of an IoT Network Based on LoRa, Guillaume Ferré, François Rivet, Romain Tajan and Eric Kerhervé
- Eusipco 2017 : Collision and packet loss analysis in a LoRaWAN network, Guillaume Ferré
- GRESTI 2017 : Principe de la couche physique LoRa et analyse de ses performances, G. Ferré et A Giremus
- Présentation à Bordeaux Métropole (9/10/2017) : les quartiers intelligents, G. Ferré
- Pour célébrer l'IEEE Day 2017 qui aura lieu mardi 3 octobre 2017, nous avons l'honneur d'accueillir le professeur Ricardo Rei, de l'Universidade Federal do Rio Grande do Sul (UFRGS). Il tiendra une conférence sur le thème : "Low Power Challenges in IoT and CPS" à 10h30 dans l'amphi JP Dom. Biographie et abstract à retrouver sur : http://www.ieee-bordeaux.org/
20172018.html
- Actions de recherches :
- Groupe Organique et Signal : Guillaume Wantz et Guillaume Ferré - Les cellules photovoltaïques organiques communicantes.
- Sysnum : Impliqué dans l’axe réseau large échelle et objets connectés. Début d’une thèse IMS/LaBRi sur la gestion des interférences entre objets connectés de réseaux hétérogènes.
- Plateforme IoT IMS : déploiement à l’IMS d’une plateforme IoT en technologie LoRa.
- Cette plateforme va être étendue au Panama, au Chili, au Brésil et au Canada.
2017
![]() |
![]() |
![]() |
![]() |
![]() |
|
Un environnement de simulation pour le codage de canal | Characterization and modelling of SubTHz & THz-transistors | CSH - Microwave Team : Front End architectures and building blocks RF / micor-waves / mm-waves | Réseau de capteurs Micro-Ondes communocants, Application à l'analyse non destructive in-situ de matériaux | Analyse des performances de la couche physique LoRa | Analyse des collisions et des pertes dans un réseau d'objets connectés utilisant le protocole LoRaWAN |
![]() |
![]() |
![]() |
![]() |
||
Effect of passivation annealing on the electromigration proprieties of hybrid bonding stack | Reliability Aware Circuit Design for High Speed Communication Systems | Riemann RF Generator for 5G NB-IoT | Organic Solar Cells monitoring with Internet of Things |
2016
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
CArbon and Microwaves-based Ultrasensitive gas Sensors (CAMUS) for monitoring and analysing distributed applications | Analog & RF development for wireless systems | Microcapteurs à base de Micropoutres | Towards en Enterprise Operating System (EOS) | CSH - Microwave Team : Front End architectures and building blocks RF / micor-waves / mm-waves | LoRa for IoT : Physical layer principle and synchronization methods |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Distributed Simulation Platform to Design RFID based Freight Transportation Systems | Reliability-Aware Analog Design | Prévision de la fiabilité des circuits numériques | Microsystèmes de récupération d'énergie | Characterization and modelling if SubTHz & THz-transistors |